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Abstract 
Given a sample space with many random variables defined on it, it makes lots of scene 
to think of some kind of association among them. Generally, sample space due to 
biological experiment is thought to create many random variable with biologically 
motivated inter or intra-relationship. In this study, our sample space contained mRNA 
profile of 6 immune system candidate genes: Interfron Gamma (IFN-γ), Tomur 
Necrotic Factor alpha (TNF-α), Granolocyt-Macrofage Colony Stimulating Factor 
(GM-CSF), Interleukine-2 (IL-2), Interleukine-6 (IL-6) and Interleukine-8 (IL-8) in 
which their transcriptome were obtained. These genes were due to dairy cattle in 
different biological states e.g. the early, middle, late of lactation and cows suffering 
from mastitis. Using Bayesian Network (BN), we concluded that first, many genes 
showed independent behaviour in terms of regulation (there were not any wired 
regulation among them over different biological states) second, the mode of regulation 
changed across different biological states. In mastitis state, IL-8 shown to be regulator 
of TNF-a, IL-8 was regulator of GM-CSF in early lactation, in middle of lactation, IL-2 
shown to be regulator of IFN- γ and in late of lactation IL-8 turned out to be regulator 
of GM-CSF. This research revealed that the mode of regulation of candidate genes was 
not identical over different biological states. Overall, we showed that aforementioned 
immune system candidate genes should be seen in the biological context which they 
are functioning. Therefore, if the objective is to tackle with mastitis using drug 
targeting studies or in genetic selection, it is more relevant to pay close attention to IL-
8 as it is predicted to show the mode of regulator in mastitis state in dairy cattle. 
However, this gene was also the regulator of other different genes in across different 
biological states. 
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Introduction 
 
Bayes theorem is generally defined for both continuous 
and discrete random variables, though a mixed one 
could also be derived. Suppose we have two genes X  

andY in which their expression profile have been 
measured in a random sample of cows. Based on 
general axiom of probability theory, we could say that 
x  and y are independent (e.g. no regulation mode exists 
between them) if our calculation would end up as: 
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. ( )  ( ) ( )X Y Y Xf x y f y f x∩ = . It means both of these two 
genes are probabilistically biologically independent. 
However, independency can hardly be seen in the 
context of sample space which is due to biological 
experiment. We may take a next step to find the 
probability that one gene would function conditional on 
the state of other gene (conditional probability). A 
tricky thing to keep in the mind is that we always 
condition on known phenomenon, a matter which most 
time people would have narrow ideas about it. For 
example: 
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is conditional probably in which we are conditioning 
the function of gene X  based on the fact that gene Y  
is already functioning (know phenomenon). The value 
of / ( / )X Yf x y  would be / ( / ) ( )X Y Xf x y f x0 ≤ ≤  therefore 
we would never expect the value of / ( / )X Yf x y  would be 

more than ( )Xf x . We may get the 
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in which now we are looking to find the functioning 
state of gene Y  given gene X by doing very simple 
algebraic rearrangement: 
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Since 
/( ) ( / )X Y Xf u f y x du

∞

−∞
∫

shall end up to 1 (it is 
called normalizing constant) we could write up 

simply / /( / ) ( / ) ( )X Y Y X Xf x y f y x f x≈ϒ which is called 
Bayes theorem (law). This theorem shall play an 
immense role in area of probabilistic inferences 
especially in Bayesian network. 
Understanding a Bayesian Network in a Discretized 
Form 
Understanding BN in compact way using continuous 
random variables is a formidable task for non-
computational people. We give the following topology 
of BN due to 4 discrete random variables (we write 

down ( )p X  instead of ( )f x ). Figure 1 echoes all details 
about this system. By probability law, the prior 
information of all genes can be written as follows (ON 
means genes function and OFF means gene not 
function): 
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Which these results can be in the left part of Figure 1. 
By helps of Bayes law we can have: 
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We could see that to compute the probability of gene Y 
is ON when gene W is also ON, we need to Bayes' 
theorem .e.g. 
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We cannot yet complete this computation because we 
do not know ( | )P W ON Y ON= = . We can, obtain this 
value in the manner shown when we discussed 
downward propagation e.g. 
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Fig. 1: Illustration of simple discretized Bayesian network 

with its prior information 
 
After doing this, computation, also computing 

( | )P W ON Y OFF= = (because gene X  will need this 
letter value) and then determining ( | )P Y ON W ON= = , we pass 

( | )P W ON Y ON= = and ( | )P W ON Y OFF= =  to X .  
 
We then could compute: ( | )P W ON X ON= = and 

( | )P X ON W ON= =  in sequences as follow: 
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It shows that any inquiry can be obtained by 

having a topology of a BN and in this way, Bayes 
theorem plays an extremely pivotal role. In the context 
of gene expression probabilistic modelling, many 
approaches have been developed. The so-called 
relevance networks were introduced by Butte and 
Kohane (2003) and graphical Gaussian models by 
Scheafer and Strimmer (2005). By extending BN, 
Segal et al. (2003) came up with module network, 
which could be seen as one of the best studies in 
which mathematical prediction formalism met 
unknown real biological regulation, e.g. many 
predicted regulations using module network, proved to 
be biologically real in wet lab work. Adriano and 
Husmeier (2007) introduced an intelligent way to 
study the integration of biological prior information 
(e.g. motif data, KEGG and etc.) into the inference of 
gene regulatory networks. Out of many findings, they 
showed that in the course of including two sources of 
prior knowledge with similar distribution, the 
marginal posterior distributions of the associated 
hyper-parameters are similar whereas when prior 
knowledge are different, higher weight should be 
assigned to the prior source of information that is 
more consistent with the data generation process. This 
findings scale up the role of relevant and irrelevant 
prior data in learning Bayesian network. Nurul et al. 

(2011) showed that BN neural network outperformed 
than resilient back-propagation in terms of accuracy 
for translation initiation sites (TIS) classification. In 
the context of classical dairy cattle breeding, our 
literature review turned out that occurrence of diseases 
has fetched the BN formalism than other feature of 
cattle production data. However, Zhang (2011) came 
up with a BN to model automatic and interactive 
image segmentation for cow image data. This idea 
worked well in practical scenario. In the most classical 
studies which have been done for understanding 
cytokines genes like interleukins/interferons adapted 
full reductionism view (Bała et al., 2004; Heiser et al., 
2015). Due to their immense importance in immune 
system, jointly analyzing them using a robust method 
like BN is promising. As it came out, BN formalism 
permits construing regulatory relationship among 
genes. In this study, mRNA profile of 6 immune 
system candidate genes: Interfron Gamma (IFN-γ), 
Tomur Necrotic Factor alpha (TNF-α), Granolocyt-
Macrofage Colony Stimulating Factor (GM-CSF), 
Interleukine-2 (IL-2), Interleukine-6 (IL-6) and 
Interleukine-8 (IL-8) were used to learn BN in 
different biological states of Iranian Holstein dairy 
cattle. By our knowledge, this is the first study 
undertaking such modelling in this theme. 
 
Materials and Methods 
 
Animals 

Eighteen healthy dairy heifers were grouped 
according to their lactation stages (6 at 7-10 days, 6 at 
140-150 and 6 at 290-295 days after parturition). In 
addition to the healthy cows, four dairy heifers with 
clinical mastitis were also included in this experiment. 
The selection criteria in healthy heifers was SCC< 
350,000/ml for early lactation stage and 
SCC<100,000/ml for middle and late lactation stages. 
 
RNA extraction 
     In healthy dairy heifers, one litre of milk sample 
representing all four quarters was collected in sterile 
tubes. The milk samples from heifers with mastitis 
were collected from the quarter with clinical mastitis 
immediately after the onset of clinical signs and 
before drug treatment. The milk samples were 
centrifuged for 20 min at 1500 g at 4°C. The cell 
pellet was washed in PBS pH 7.4 twice and 
centrifuged for 20 min at 4°C and 220 g. The pellets 
were lysed with 500 µl PBS- EDTA and kept at -40 
until RNA extraction. Total RNA was isolated using 
Denazist kit according to the manufacturer’s protocol. 
The extracted RNA samples were treated with DNase 
I (Cinnagen) to remove DNA contamination. The 
quality of extracted RNA was assessed by 
electrophoresis on 1% agarose gel. 
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cDNA Synthesis and Real-Time PCR 
Synthesis of first strand cDNA was performed with 

random hexamer primers (Takapozist) and Accu Power 
® Rocket Script TMRT PreMix kit (Bioneer) according 
to the manufacture’s instructions. The final volume was 
adjusted to 50 µl with RNase free water. The amplified 
cDNA samples were then stored at -20 °C until use in 
real-time PCR. The primers used for the gene 
expression evaluation and the β-actin gene were used as 
endogenous reference for the calculation of dCp (Table 
1). Real-time PCR was performed using CFX96 
(BIORAD, USA) and Hot Taq Eva Green qPCR kit 
(Cinnagen) according to their instructions. All reactions 
were performed in duplicate. Amplification conditions 
were 95°C for 15 min; 50 cycles of 94°C for 15 s, 60°C 
for 30 s,  and 72°C (depending on the product length, 5 
s per 100 bp). Then, all samples were submitted to 
analysis of the dissociation curve in order to confirm 
the absence of nonspecific products and primer 
dimmers (melting curve by 95°C for 5 s, 65°C for 15 s, 
and 95°C for 0 s).  
Learning BN 

For learning Bayesian network, we used windows 
interface of SMILE (Structural Modeling, Inference, 
and Learning Engine), e.g. GeNIe (https://dslpitt. 
org/genie/). This versatile program is a fully different 
platforms portable library of C++ classes implementing 
graphical decision-theoretic methods like BNs). Many 
decision-systems laboratory around the world, have 
used this program to solve their hard-probabilistic 
decisions. We provided right format of our data to be 
compatible with GeNIe’s data requirement. For every 
run, we save our results. The crucial point with GeNIe 
is a possibility to assign prior information in neatly 
way. It shall be so helpful in cases that a researcher is 
aware of some biological functions of the genes, 
proteins, etc, that (s) he is interested in learning some 
parameters. 
 
Results and Discussion 
 

Descriptive statistics of gene expression value 
based on cross point (CP) for 6 candidate genes across 
four biological states were listed in Table 1. Implicitly 
not explicitly, it can be seen that IFN- had high level of 
expression in comparing with other genes. In other 
words, this gene could be seen as most functional genes 
among these states. If we just take the information 
provided in Table 1, it is quite obvious that 
aforementioned gene show high amount of variability 
than other genes. However, when it does come to gene 
expression analysis, we need much rigor statistical 
measures to trade off gene expression values across 
time points or samples. We could find differentially 
expressed genes across these biological states, but it 
was not our immediate objective in this study. 

However, Kadota and Shimizu (2011) provided through 
references for finding differentially expressed genes.  

By looking at Table 2, diverse gene association can 
be seen. We took a parametric approach (Pearson 
correlation) to compute these values. A successful and 
very promising of Pearson-based association analysis 
(gene network) was introduced in the context of gene 
expression. Both the strength and mode of gene 
associations changed (not for all genes) among 
biological states. For example, it turned out that GM-
CSF gene (which shown to be a gene regulator in our 
study (Fig. 2) functions in different biological levels 
(Fig. 3). Put our results in quantitative genetic theory, 
we loosely can say that there are quite low associations 
across these genes using our data had almost negative 
and strongest association with IL-8 over early and mid-
lactation (-0.87 and  -0.95, respectively). But the mode 
of this association was changed positively in late 
lactation (0.42). In overall, getting interpretation among 
genes over these states remained cumbersome and 
complex. In other words, the mode and magnitude 
association of genes are different in different biological 
states. This might underscore this reality that gene's 
functions likely are affected in biological states in 
which they are functioning.  

The results of Bayesian network can be seen in 
Figure 2. It could be seen that for each biological states 
e.g. mastitis, early, middle and late lactation a Bayesian 
network has been learned. Like Table 2 which shows 
association of genes in different states is different, here 
this discrepancy is echoed much better. What we could 
see here is not only this discrepancy but also the 
regulation mode among genes. General to all biological 
sates, we could see that a very simple regulation mode 
predicted between genes. In mastitis state, IL-8 could 
be seen as regulator of TNF-a, but there were not any 
other wiring regulatory links with other genes. 
Factorization of learned BN for mastitis could be 
written as: P(IFN-γ, TNF-α, GM-CSF, IL-2, IL-6, IL-
8)=P(IFN-γ)P(GM-CSF)P(IL-2)P(IL-6)P(IL-8)P(TNF-
α|IL-8). In the early and late lactation, IL-8 gene turned 
out to be regulator gene too. However, its target 
(regulate gene) in two aforementioned states was gene 
GM-CSF. Factorization of learned BN for these two 
biological states should be similar e.g. P(IFN-γ, TNF-α, 
GM-CSF, IL-2, IL-6, IL-8)=P(IFN-γ)P(TNF-α)P(IL-
2)P(IL-6)P(IL-8)P(GM-CSF|IL-8). In the middle 
lactation, the regulation scenario is changed. As it can 
be seen in Figure 2, IL-2 is predicted to be regulator of 
IFN-γ. It says that by manipulating gene IL-2 it is 
expected that the function of IFN-γ gene undergone 
functional disturbance. For this biological sate, 
factorization of learned BN would be shown as follows 
P(IFN-γ, TNF-α, GM-CSF , IL-2, IL-6, IL-8)=P(GM-
CSF)P(TNF-α)P(IL-2)P(IL-6)P(IL-8)P(IFN-γ|IL-2). By 
seeing these four BNs (and their factorizations) we
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Table 1: Descriptive statistics of expression value of immune system candidate gene across different biological states 
Biological state Genes Mean Variance StdDev Min Max 
Mastitis IFN- 33.0 0.6 0.8 32.3 34.0 

TNF-a 27.9 0.1 0.3 27.7 28.3 
GM-CSF 35.0 0.7 0.9 34.0 36.1 
IL-2 34.5 0.4 0.6 33.8 35.4 
IL-6 33.6 0.1 0.3 33.2 33.9 
IL-8 33.8 1.6 1.3 32.1 35.0 

Early lactation IFN- 40.70 10.41 3.23 37.32 45.43 
TNF-a 38.89 6.62 2.57 35.70 42.11 
GM-CSF 40.07 1.87 1.37 38.00 41.86 
IL-2 42.26 1.01 1.01 40.80 43.94 
IL-6 32.74 0.19 0.44 32.26 33.39 
IL-8 38.46 2.89 1.70 37.04 41.55 

Mid lactation IFN- 41.25 4.63 2.15 37.57 43.56 
TNF-a 43.60 1.13 1.06 41.75 44.70 
GM-CSF 37.55 0.60 0.77 36.69 38.64 
IL-2 39.96 1.70 1.30 38.74 41.99 
IL-6 33.22 0.37 0.61 32.73 34.01 
IL-8 37.12 0.47 0.69 36.20 38.00 

Late lactation IFN- 42.72 4.14 2.03 39.00 45.11 
TNF-a 38.63 2.22 1.49 37.51 40.99 
GM-CSF 38.53 5.47 2.34 35.17 41.64 
IL-2 40.67 3.85 1.96 38.19 43.70 
IL-6 32.75 0.28 0.53 32.17 33.73 
IL-8 38.48 1.62 1.27 37.00 40.06 

 
Table 2: Pearson correlation expression value of immune system candidate gene across different biological states 

Biological state  IFN- TNF-a GM-CSF IL-2 IL-6 IL-8 
Mastitis IFN- -      

TNF-a -0.1 -     
GM-CSF 0.4 0.3 -    
IL-2 -0.2 -1.0 -0.4 -   
IL-6 -0.9 0.4 -0.2 -0.1 -  
IL-8 0.2 -1.0 -0.2 0.9 -0.5 - 

Early lactation IFN- -      
TNF-a -0.08 -     
GM-CSF 0.71 -0.37 -    
IL-2 0.58 0.48 0.14 -   
IL-6 0.25 0.30 0.18 0.31 -  
IL-8 -0.36 0.26 -0.87 -0.08 -0.06 - 

Mid lactation IFN- -      
TNF-a 0.53 -     
GM-CSF 0.31 -0.49 -    
IL-2 -0.74 -0.70 0.05 -   
IL-6 0.34 0.07 0.38 0.23 -  
IL-8 -0.24 0.48 -0.95 0.08 -0.15 - 

Late lactation IFN- -      
TNF-a -0.29 -     
GM-CSF -0.58 -0.09 -    
IL-2 0.83 -0.75 -0.42 -   
IL-6 -0.76 0.32 0.03 -0.68 -  
IL-8 -0.55 0.17 0.42 -0.36 0.16 - 

 
could see that small amount of complex regulation 
might exist between these genes, that is, many genes 
shown up to function independently. Therefore, it 
makes sense to use some general tools to find the 
association of these genes with other genes not included 
in this study. We used online gene network Gene Mania 
(http://genemania.org/) to find genes that are related to 

our set genes in this study. We also used web-based 
interface http://www.pathwaycommons.org/ that 
contains a set of publicly accessible pathway 
information from multiple organisms to find the 
associations of our immune system candidate genes 
with each other and other genes biochemical reactions. 
GeneMANIA  program  is  an  online  program  and has 
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Fig. 2: Topology of learned Bayesian network of immune 

systems candidate genes across different biological 
states. 

 

 

 
Fig. 3: Results of GeneMANIA (up) and pathway 

commons (down) for immune systems candidate 
genes 

large ensemble of functional association bucolical 
information. This program is also accessible in different 
way but one of right way to find it is to delve in 
BioGRID (http://thebiogrid.org/). GeneMANIA 
provides wide list of motivated information e.g. 
physical interactions, co-expression, predicted, 
pathway, co-localization, genetic interactions, and 
shared protein domains just by providing some right 
gene names (accessions). 

Results of both program underpinned that 
regulation of these are quite complex depending on the 
view we are looking at them. For example, it turned out 
that GM-CSF gene (which shown to be a regulate gene 
in our study (Fig. 2) and is indicated in right panel of 
Figure 3 (CSF2) functions in different biological levels. 
Put our results in quantitative genetic theory, we 
loosely can say that there are quite low associations 
across these genes using our data. 

In other words, if the idea is to put some of these 
genes in breeding plan, care must be taken to select 
right ones. Our data could loosely say that indirect 
selection of these genes is hardly likely to improve the 
performance of other genes as no regulated wiring was 
observed in our study. It is generally tempting to think 
that structure of BN would encode the causality 
structure across genes. There are so many biological 
players hampering learned BN out of empirical data. 
Formal BN adopts acyclic graph with no arrow from 
children (regulated genes) to parents (regulator genes), 
representing lack of feedback loops in gene interactions 
(pathways). To circumvent this restriction, temporal 
extension called of BN e.g. dynamic Bayesian networks 
(DBN) was introduced (Zou and Conzen, 2005) 
permitting loops (feedbacks) by unrolling over time 
points. Chen et al. (2008) used systems biology 
approach to construct the gene regulatory network of 
systemic inflammation. They used DBN in accompany 
with data mining algorithms and they show a great 
improvement in analyzing the systemic inflammation. 
The screened up genes such as NF-kB, TNF-α, RELA, 
as highly connected hubs of the signalling transduction. 
Therefore, it is expected if these genes are inactivated 
by any means (mutation or disease), the inflammatory 
gene network shall culminated to eventual collapse of 
the system. Also addressed following genes IL1A, 
IL1B, IL1R, IL6, TNFA, IL17, IL8, IL1R, TLR4 and 
TNFR to be vital for the inflammatory response 
because they were more tightly connected in 
inflammation than in normal conditions. Recently new 
probabilistic formalism e.g. continuous time BN was 
applied to reconstruction gene network of Th17 cell 
(Acerbi Enzo et al., 2014). In both computationally 
motivated themes like small and big dataset, these 
methods outperformed that state-of-art modelling e.g. 
BN and DBN. Interleukin genes families have been 
deeply investigated (Pahl, 1999; Hoai et al., 2010). 
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Kitano and Oda (2006) and Hoai et al. (2010) addressed 
that Interleukin-1 alpha (IL1A) and Interleukin-1 beta 
(IL1B) biologically function via their receptor (IL1R) 
to induce gene expressions. This biological function 
involved in a protein loop (feedback) production in 
inflammatory phenomenon. Hoai et al. (2010) has 
worked out BN with application to family of cytokine 
IL15. Surprisingly, the application of BN in modelling 
different features of dairy cattle is not eye-catching 
(Morota et al., 2012). There should be some reason for 
it such as difficulty of interpretation of the results, lack 
of adequate data and etc. Morota et al. (2012) 
investigated the usefulness of BN for linkage 
disequilibrium (LD) analysis of milk protein in Holstein 
breed (Lindstrom et al., 2013). It is found that BN 
captured several genetic markers that were inter-related 
in a complicated scheme. Also the results shown that 
LD-based Bayesian network was capable to infer the 
associations between genetic markers in a systematic 
way and provides much precise of big picture of LD 
than general classical way of LD detection. Lindstrom 
et al. (2013) proposed a BN based method for 
understanding epidemic disease outbreak models in the 
United States using partially observed cattle movement 
data. The proposed model had this capability to scale up 
a full network based on Bayesian inference. It is quite 
likely to have a BN network with unobserved but vital 
edge in biological paradigms too. We may argue this 
matter can be talked with by Yu et al. (2009) method. 
However, BN learning requires much data and 
knowledge. In our case the dataset was scare. There are 
some methods which are developed to learn effective 
Bayesian network. Yu et al. (2009) developed a two-
layered BN based diagnostic disease model that 
addressed such caveats e.g. dealing with uncertain 
knowledge in the context of existing narrow data. 
Similar to Lindstrom et al. (2013) which used BN 
formalism in disease data, Jehan et al. (2009) applied 
BN to create herd specific based model for existing 
lameness causing diseases in 50 Danish dairy herds. It 
is shown that BN, adjusted probability distributions of 
existing the disease in a given herd systematically a 
way that couple of sources of information, that is, 
population, herd and cow level information combined 
and the uncertainty in inference on disease probability 
was effectively predicted. The challenges imposed by 
the large number of variables but the small number of 
sample points were described, and a variety of 
computational strategies for addressing these challenges 
were outlined. To date, BNs have been successfully 
inferred for microarray data from yeast and for flow 
cytometry data from human immune system cells, but 
not for gene expression data from mammalian or 
oncological sources. Computational inference of 
Bayesian network structures from high-throughput data 
is difficult, but new computational methods are making 

it feasible to automatically deduce robust interactions 
between variables. The application of these methods to 
high-throughput biological data sets will help us to 
understand the nature of the altered biological 
interactions that lead to and occur in many diseases. 
 
Conclusions 

This paper surveyed computational learning BN 
model, or at least very general features of such models, 
from non-high-throughput immune system candidate 
gene expression in dairy cattle. BN formalism had 
capability to reveal neat and minuscule topology of 
immune system candidate genes. In our study, we did 
not have the problem of so-called curse of 
dimensionality. When tackling with many variables 
(genes) in gene expression data, many computational 
issues either in positive or negative side could spring 
up. One problem would be deriving high-dimensional 
and efficient search space search algorithms, which still 
is a hot area of research in computer science and 
machine learning communities. We claim that putting 
side-information e.g. those immune system candidate 
genes which turned out to be regulator (parent) in high-
dimensional immune microarray BN learning, would 
reduce the search space learning, since by having 
relatively small number of candidate genes as parents, 
we can restrict our search to learn a network in which 
candidate genes be its parents culminating in having 
smaller search space. However, in this scenario many 
networks should be learned to give a reasonable 
explanation of real-world problem. 
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